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On the propagator of a charged particle in a constant 
magnetic field and with a quadratic potential 
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Abstract. We first show that the propagator of a charged particle in a constant external 
magnetic field and with a quadratic potential is related to the propagator of a one- 
dimensional time-dependent forced harmonic oscillator with generalised memory. For 
special cases, we are able to evaluate the propagator exactly with the help of a gaussian 
integral. Our results are in agreement with well known results for simple cases. 

1. Introduction 

From Feynman’s path integral approach to nonrelativistic quantum mechanics, we 
know that the propagator gives the wavefunction at a time tb  in terms of the wavefunc- 
tion at an earlier time t,. Unfortunately, to evaluate the propagator from the path 
integral is, in general, much more difficult than to obtain the wavefunction from the 
Schrodinger equation of the same dynamical system. However, the exact propagators 
have been evaluated for such dynamical systems as the harmonic oscillator (Feynman 
and Hibbs 1965, Schulman 1981, Cheng 1983), the harmonic oscillator with memory 
in imaginary time (Papadopoulos 1974, Maheshwari 1975, Khandekar et a1 1983) and 
the time-dependent forced harmonic oscillator with constant damping (Khandekar and 
Lawande 1979, Cheng 1984). It seems worthwhile to have more new exact propagators. 
The purpose of the present paper is to show that the propagator of our dynamical 
system can be related to that of a one-dimensional time-dependent forced harmonic 
oscillator with generalised memory. Then we evaluate the closed exact propagators 
with the help of a gaussian integral for some special cases. 

2. Formulation 

For a charged particle of charge q and mass m in a constant external magnetic field 
B in the z direction and with a quadratic potential, the Lagrangian has the form 

L = ( m / 2 ) [ (  1 2  + y 2  + i2)  - ( f L J i X 2  + w ; y 2  + w y )  + w ( x y  - y X ) ] ,  (1) 
where U,, w y  and U, are respectively the frequency along the x ,  y and z directions 
and w = qB/mc. Therefore the propagator of our dynamical system can be expressed 
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as the path integral (Feynman 1948) 

where Dx(t) Dy(t) D z ( t )  is the usual three-dimensional Feynman path differential 
measure. Following the idea of Feynman and Hibbs (1965), we now consider our 
dynamical system as representing the motion of three particles of equal mass m, whose 
coordinates are respectively x, y and z. Then (2) is the probability amplitude that the 
particle with coordinate x goes from the point in space-time (x , ,  t , )  to ( x b ,  tb), the 
particle with coordinate y goes from (y,, t , )  to (yb, t b )  and finally the particle with 
coordinate z goes from (z,, t , )  to  ( zb ,  f b ) .  

Since the particle with coordinate z is only a free harmonic oscillator, we can easily 
show that 

N b ,  a ] =  &,(zb, tb; z,, t o )  exp[(imw/2h)(x,ya -xbyd1G[b, a]. (3) 

Kuz( zb, tb ;  z,, t , )  stands for the propagator of a one-dimensional harmonic oscillator 
with frequency w,. Here the functional G[b, a] takes the form 

G[b, a ] =  lab exp( (im/2h) jrr (y2-w;y2)  dt)T[y(r)l  Dy(t)  (4) 

with the functional T [ y ( t ) ]  given by 

T[y(t)]= Iabexp((im/2h) Irr (x2-w~x2+2wyx) dt  ( 5 )  

( 5 )  is the propagator of a one-dimensional forced harmonic oscillator in a time- 
dependent external force m w y ( t ) ,  which is related with the motion of the particle 
with coordinate y. 

Using the well known result of time-dependent forced harmonic oscillator (Feynman 
and Hibbs 1965, Schulman 1981), ( 5 )  becomes 

X exp[ ( imw 2wx ) y ( t )  cos w, ( tb - t )  dt y (s) cos U, (s - t , )  dt  h sin w,T 
(6) 

after integration by parts. Ku,(xb, tb;  x,, t ,) is the propagator of a one-dimensional 
harmonic oscillator with frequency w, and T = t b  - t,. Combining (3),  (4) and (6), the 
propagator (3) has the following important form 

K[bi al=KuX(xtx t b ;  xa, ta)&z(zb, t b ;  z a ,  f a )  exp[(imw/2)r)(xbyb-X,Y,)lH[b, a17 (7) 
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where the path integral H[b,  a ]  is given by 

H [ b ,  a ] =  Iabexp[(E)  [‘ .[y2-R’y2+(2/m)f(t)+M(f)]dt] 1, Dy(r) 

with 
f ( t )  = mww,[x, cos w x ( t b - t ) - X b  cos w,(t-?,)]/sin w,T (9) 

and 

M (  t )  = ( 2w2u,/sin w,T)y(  t )  COS U,  ( tb - t )  y (  S) COS U,( s - t,) ds. (10) I,: 
Here we also have set R2=w2+w: .  Equation (8) is the propagator of a one- 
dimensional harmonic oscillator in a time-dependent force f (  t )  and with a generalised 
memory M (  t ) .  Equation (7) is one of our principal results, which relates the propagator 
of our dynamical system to the propagator (8).  Unfortunately, the memory term M ( t )  
in (8),  which is more general than that studied by Khandekar et a l  (1983), cannot be 
evaluated exactly at the present time. From now on we only consider the case w, = 0 
and (7) and (8) will be calculated in § 3. 

3. Evaluation 

For w, = 0, we can rewrite (8) as 

~ [ b ,  U ]  = Jab exp[ ( E )  J l b  [ j’ + ( 2 0 /  T)( X, - X b )  y - R’Y’] dt ] 
1. 

(imw’/%T)( Jr: y ( t )  dt)’] Dy(t)  

after integration by parts of the memory term M ( t ) .  As we see, the difficult part of 
path integral (1 1) is the last exponential functional which involves off -diagonal terms. 
We introduce the following gaussian integral (Papadopoulos 1974) 

= (’”) 2 d T  I” 5 --JD O3 ex p[ - (*) 2h T f ‘ + ( fi)f f iT 1 1. lb y ( t )  d t ] d f, (12) 

where f is an auxiliary variable. Equation ( 1  1) can then be rewritten as 

H[b,  a ]  = ( i m / 2 d T ) l ”  exp[-(im/2hT)f2]H[b, a ;  f ]  df, (13) 

where the path integral 

H [  b, U ; f ]  = lab exp [ (E) I [ ,” - R2 y2 + 20 ( X, - x b  + f )/ T] d t ] D y ( t )  
1. 

is the propagator of a one-dimensional forced harmonic oscillator with constant 
frequency R and with constant external force mw(x, - xb +f) /  T. Thus the memory 
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term in (11) has been removed by first introducing an auxiliary variable f and then 
by integrating over f from --CO to 00. 

Now we can easily show that 

H[b,  a ; f I = K d y b ,  f b ;  y,, t o )  e~p[(imw~/2hR~T~)g(RT)(x,-xb)~I 

xexp[(imw/fiRT) tan(RT/2>(x, - x ~ ) ( Y ,  + y d l  
x expC(imw2/2hR3~’)g(~ ~ ) f ’ ]  

x e x p 1 ( i m w / h ~ ~ ) [ t a n ( ~ ~ / 2 ) ( y ,  + y b )  + wg(RT)(x, - xb ) /R*T l f>  
(15) 

after lengthy but straightforward calculations. Kn(Yb, f b ;  y,, f,) is the propagator of 
a one-dimensional harmonic oscillator with frequency R and g(R T )  = 
RT- 2 tan(RT/2). By substituting (15) into (13) and then carrying out the integration, 
we finally arrive at our principal result 

K[b ,  a l=[H(f lT) I -”2K~(xb ,  fb;  xa, fn)Kn(yb, f b ;  Yay fa)Kuz(zb, f b ;  za? fa)  

exp[(imw/2h) ( X b Y b  - XaYa ) I  
exp[Ax( T ) ( x a  - Xb)‘+Axy( - xb)(ya + y b )  + Ay( T ) (  y o  + Yb>*]  

(16) 
with 

A,( T )  = imw’g(R T ) / ~ ~ ~ T Z H ( R T ) ,  Axy ( T )  = imw tan( R T /  2)/hR TH(R T ) ,  

AY( T )  = imw2 tan2(RT/2)/2hR2TH(RT), 

with the help of (7). Here we have let H(RT) = 1 - w2g(QT)/R37’. Furthermore, we 
can show in the appendix that (16) does satisfy the following semigroup property 

for any time f, in between fa and tb 

4. Conclusions 

For w = 0 (without constant external magnetic field), (16) becomes 

K[b ,  a]=KO(xb, fb ;  xa, f o ) & y ( y b ,  f b ;  yo)  fa)Kwz(zb, f b ;  za, fa )  (‘1 8) 
as we expect. For w y  = w, = O  (without quadratic potential), (16) reduces to the 
following well known result 

K[b,  a ]  = ( m / 2 . r r i f i ~ ) 3 / 2 [ W ~ / 2  s in (w~/2 ) ]  e x p [ ( i m / 2 h ~ ) ( z ~  - z,)~] 

exp((imw/ 2h)([cot(wT/2)/ 21[(xb - xa 1’ + ( Y b  - Yo  )’I+ ( & y b  - XbYa ))I 
(19) 

after straightforward simplifications. The above result has been obtained by Feynman 
and Hibbs (1965), Glasser (1964), Levit and Smilansky (1977) and Marshall and Pel1 
(1979) among others. However, the present method is simpler than others and, to 
our knowledge, has not been investigated elsewhere. 



Charged particle in constant magnefic field 823 

As a final remark we should mention that the propagator of a charged particle in 
a constant external magnetic field and with a quadratic potential is equivalent to (7). 
The external time-dependent force term f (  f )  and the generalised memory term M (  t )  
in (8) are corresponding to the interactions between two particles with coordinates x 
and y. Finally, the work of evaluating (8) exactly by our method (Cheng 1984) and 
of applying (16) to find quantum levels and wavefunctions is in progress and will be 
published elsewhere. 

Appendix 

since &(zb, tb; z,, t ,)  satisfies (17). We have let A0(T/2) = i m / h T  and An(T/2)  = 
imfl/2h sin(QT/2). From their definitions, we can obtain 

A0(T/2)+Ax(T/2)  =im/hTH(QT/2) ,  (A2) 

= i m Q H  (Q T )  cot (Q T /  2) / 2hH (Q T /  2), 

AY( T / 2 )  + An( T/2)  COS(!^ T/2)  

(A3) 
AY( T /  2) -An( T /  2) = [ -im/2hQ2 TH( T /  2)][Q T (  R2 - w 2 )  cosec(R T /  2) + 2w 2]. 

(A41 
By substituting (A2)-(A4) into (Al ) ,  we finally obtain (17) after integrating two well 
known gaussian integrals and after lengthy but straightforward simplifications. Now 
we can repeat the above calculations and show that (17) is satisfied for td = ( t , +  t,)/2 
and t ,  = ( f b  + t,)/2. Therefore, (17) is valid for any time t such as t, s t s tb  since the 
above process can be continued infinitely many times. 
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